Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells
نویسندگان
چکیده
The endoplasmic reticulum (ER) is a multifaceted cellular organelle both structurally and functionally, and its cell cycle-dependent morphological changes are poorly understood. Our quantitative confocal and EM analyses show that the ER undergoes dramatic reorganization during cell division in cultured mammalian cells as mitotic ER profiles become shorter and more branched. 3D modeling by electron tomography reveals that the abundant interphase structures, sheets, are lost and subsequently transform into a branched tubular network that remains continuous. This is confirmed by observing the most prominent ER subdomain, the nuclear envelope (NE). A NE marker protein spreads to the mitotic ER tubules, although it does not show a homogenous distribution within the network. We mimicked the mitotic ER reorganization using puromycin to strip the membrane-bound ribosomes from the interphase ER corresponding to the observed loss of ribosomes normally occurring during mitosis. We propose that the structural changes in mitotic ER are linked to ribosomal action on the ER membranes.
منابع مشابه
Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells
The endoplasmic reticulum (ER) is both structurally and functionally complex, consisting of a dynamic network of interconnected sheets and tubules. To achieve a more comprehensive view of ER organization in interphase and mitotic cells and to address a discrepancy in the field (i.e., whether ER sheets persist, or are transformed to tubules, during mitosis), we analyzed the ER in four different ...
متن کاملCisternal organization of the endoplasmic reticulum during mitosis.
The endoplasmic reticulum (ER) of animal cells is a single, dynamic, and continuous membrane network of interconnected cisternae and tubules spread out throughout the cytosol in direct contact with the nuclear envelope. During mitosis, the nuclear envelope undergoes a major rearrangement, as it rapidly partitions its membrane-bound contents into the ER. It is therefore of great interest to dete...
متن کاملCHANGES OF PERK AND CHOP PROTEINS IN ENDOPLASMIC RETICULUM OF CARDIAC MYOCYTES AND TNF IN DIABETIC WISTAR RATS FOLLOWING CONTINUOUS AND INTERVAL EXERCISE
Background: Physical activity plays a major role in the prevention of cardiovascular disease and diabetes, but the effect of intense activity on endoplasmic reticulum proteins and apoptosis and necroptosis in diabetic conditions is unclear. The aim of the present study was to investigate the changes of PERK and CHOP proteins in endoplasmic reticulum of cardiac myocytes of diabetic Wistar rats f...
متن کاملEndoplasmic reticulum targeted GFP reveals ER organization in tobacco NT-1 cells during cell division.
The endoplasmic reticulum (ER) of plant cells undergoes a drastic reorganization during cell division. In tobacco NT-1 cells that stably express a GFP construct targeted to the ER, we have mapped the reorganization of ER that occurs during mitosis and cytokinesis with confocal laser scanning microscopy. During division, the ER and nuclear envelope do not vesiculate. Instead, tubules of ER accum...
متن کاملCompartmentalization of the endoplasmic reticulum in the early C. elegans embryos
The one-cell Caenorhabditis elegans embryo is polarized to partition fate determinants between the cell lineages generated during its first division. Using fluorescence loss in photobleaching, we find that the endoplasmic reticulum (ER) of the C. elegans embryo is physically continuous throughout the cell, but its membrane is compartmentalized shortly before nuclear envelope breakdown into an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 179 شماره
صفحات -
تاریخ انتشار 2007